Leçon 250 - Transformation de Fourier. Applications.

Cadre : Les fonctions considérées sont définies sur \mathbb{R} , à valeurs dans \mathbb{C} . On peut les généraliser à \mathbb{R}^d .

1. Transformation de Fourier sur $L^1(\mathbb{R})$. —

1. Définition et premières propriétés. —

- Rappel: $(L^1(\mathbb{R}), ||.||_1)$ est un espace de Banach.
- Def: Pour $f \in L^1(\mathbb{R})$ on définit $\widehat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} f(y) dy$.
- Ex: Pour $f = \chi_{[-a,a]}$, $\widehat{f}(x) = \frac{2\sin(xa)}{\sqrt{2\pi}x}$
 - Pour $f(x) = e^{-|x|}$, on a $\hat{f}(x) = \frac{2}{\sqrt{2\pi}(1+x^2)}$.
- $\text{ Pro}: \widehat{f + \lambda . g} = \widehat{f} + \lambda \widehat{g}$
- Pro : \widehat{f} est continue sur \mathbb{R} , et $\|\widehat{f}\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|f\|_{1}$.
- Lemme de Riemann-Lebesgue : Quand $|x| \to +\infty$, $\widehat{f}(x) \to 0$. Donc $\widehat{f} \in C_0^0(\mathbb{R})$.
- Pro : Soit $f \in L^1(\mathbb{R})$, $a\mathbb{R}$.
 - a) Pour $g(x) = f(x)e^{iax}$, on a $\widehat{g}(x) = \widehat{f}(x-a)$.
 - b) Pour g(x) = f(x a), on a $\widehat{g}(x) = \widehat{f}(x)e^{-iax}$.
 - c) Pour $g(x) = \overline{f(-x)}$, on a $\widehat{g}(x) = \overline{\widehat{f}(x)}$.
 - d)Pour $\lambda > 0$ et $g(x) = f(\frac{x}{\lambda})$, on a $\widehat{g}(x) = \lambda \widehat{f}(\lambda x)$.
- Ex: Pour $f(x) = e^{-\frac{|x-a|}{\lambda}}$, on a $\widehat{f}(x) = \frac{2\lambda e^{-iax\lambda}}{\sqrt{2\pi}(1+(\lambda x)^2)}$

2. Produit de convolution. —

- Def: Pour $f, g: \mathbb{R} \to \mathbb{C}$ mesurables positives, on définit $f * g(x) := \int_{\mathbb{D}} f(y)g(x-y)dy = \int_{\mathbb{D}} f(x)\tau_{-x}(g)(-y)dy \in [0, +\infty].$
- Pro : Si ces quantités sont finies, on a f * g = g * f, f * (g * h) = ((f * g) * h), et $f * (g + \lambda h) = f * g + \lambda f * h$. La convolution de fonctions est commutative, associative, et bilinéaire.
- Inégalité de Young pour la convolution : Pour $1 = \frac{1}{p} + \frac{1}{q}$ et $f \in L^p$, $g \in L^q$, on a $||f * g||_1 \le ||f||_p$, $||g||_q$.
- Ainsi, le produit de convolution est bien défini sur $L^1 \times L^1$.
- Ex: $f * \chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x) = \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} f(t)dt$.
- Pro : Ainsi, $L^1(\mathbb{R})$ muni de * est donc une \mathbb{C} -algèbre commutative.
- Thm: Pour $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p$, $g \in L^q$, f * g est uniformément continue sur \mathbb{R} et $f * g(x) \to_{|x| \to +\infty} 0$.
- Thm : Pour $f \in L^1$ et $g \in C^1$ telle que g,g' sont bornées, alors f * g est dérivable et (f * g)' = f * (g').
- Rem : Le produit de convolution régularise une fonction f en faisant une moyenne pondérée par g des valeurs de f en chaque point.

- Ex : Pour tout t > 0, la fonction $G_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$ permet de régulariser les fonctions de $L^1(\mathbb{R})$ par convolution.
- Pro : Pour $f, g \in L^1(\mathbb{R})$, $\widehat{f * g} = \widehat{f} \times \widehat{g} \cdot \sqrt{2\pi}$.
- App : L^1 ne possède pas d'unité pour la convolution.
- App : Si f * f = f dans $L^1(\mathbb{R})$, alors f = 0 pp.

3. Inversion de la transformée de Fourier. —

- Pro : Si f est de classe C^1 par morceaux et $f, f' \in L^1(\mathbb{R})$, alors $\widehat{f}'(x) = (ix)\widehat{f}(x)$. Si f est de classe C^k par morceaux et $f, f', \dots, f^{(k)} \in L^1(\mathbb{R})$, alors $\widehat{f^{(k)}}(x) = (ix)^k \widehat{f}(x)$.
- App : Si f est de classe C^2 avec $f, f', f'' \in L^1(\mathbb{R})$, alors $\widehat{f} \in L^1(\mathbb{R})$.
- Rem : Plus f est dérivable avec des dérivées intégrables, plus \widehat{f} décroît rapidement vers 0 en l'infini.
- Pro : Si $x \mapsto xf(x) \in L^1(\mathbb{R})$, alors \widehat{f} est dérivable, de dérivée $\widehat{f}'(x) = \int_{\mathbb{R}} e^{-ixy}(-iy)f(y)dy$. Si $x^k \mapsto xf(x) \in L^1(\mathbb{R})$, alors \widehat{f} est D^k , de dérivée k-ième $\widehat{f}^{(k)}(x) = \int_{\mathbb{R}} e^{-ixy}(-iy)^k f(y)dy$.
- -Rem : Plus f décroît vers 0 rapidement en l'infini, plus \widehat{f} est dérivable.
- Thm: Inversion de Fourier: Soit $f \in L^1(\mathbb{R})$ tq $\widehat{f} \in L^1(\mathbb{R})$. Alors pour $g(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \widehat{f}(t) e^{itx} dt$, on a $g \in C_0^0(\mathbb{R})$ et g = f pp.
- Cor : Soit $f \in L^1(\mathbb{R})$ tq $\widehat{f} \in L^1(\mathbb{R})$. Alors $\widehat{f}(x) = f(-x)$ pp.
- App : Injectivité de la transformée de Fourier : Si $f \in L^1(\mathbb{R})$ vérifie $\widehat{f}(x) = 0$ pp, alors f = 0 pp.

2. Extension de la transformée de Fourier. —

1. Prolongement de la transformation de Fourier à $L^2(\mathbb{R})$. —

- **Dev** : Théorème de Fourier-Plancherel : A chaque fonction $f \in L^2(\mathbb{R})$, on peut associer une fonction $\widehat{f} \in L^2(\mathbb{R})$ telle que :
- 1) Si $f \in L^1 \cap L^2$, alors \hat{f} est la transformée de Fourier de f.
- 2) $\forall f \in L^2$, on a $||f||_2 = ||\widehat{f}||_2$.
- 3) $f \in L^2 \mapsto \hat{f} \in L^2$ est une isométrie linéaire bijective d'espaces de Hilbert.
- Rem : On a ainsi un prolongement de la transformée de Fourier de $L^1\cap L^2$ qui est une isométrie linéaire bijective.
- Pro : Pour $f \in L^2$, en notant $\phi_A(t) := \frac{1}{\sqrt{2\pi}} \int_{-A}^A e^{-ixt} f(x) dx$ et
 - $\Psi_A(t) := \frac{1}{\sqrt{2\pi}} \int_{-A}^A e^{-ixt} \widehat{f}(x) dx$, on trouve :
 - $\lim_{A \to +\infty} (\|\phi_A \widehat{f}\|_2) = 0$ et $\lim_{A \to +\infty} (\|\psi_A f\|_2) = 0$
- Cor: Pour $f \in L^2$ tq $\widehat{f} \in L^1$, on a alors $f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} f(y) dy$ pp, donc la classe de f possède un représentant dans $C_0^0(\mathbb{R})$.
- Ex: $f(x) = sinc(\pi x) \in L^2(\mathbb{R}) L^1(\mathbb{R})$ et $\widehat{f} = \frac{1}{\sqrt{2\pi}} \chi_{[-\frac{1}{2},\frac{1}{2}]}$.

- 2. Transformation de Fourier dans $S(\mathbb{R})$.
 - Def: $S(\mathbb{R}) := \{ f \in C^{\infty}(\mathbb{R}) \text{ tg } \sup_{x} |x^{\alpha} \varphi^{(\beta)}(x)| < +\infty, \forall \alpha, \beta \in \mathbb{N} \}.$
 - Def: On munit $S(\mathbb{R})$ des semi-normes: $\|\varphi\|_{\alpha,\beta} = \sup_x |x^{\alpha}\varphi^{(\beta)}(x)|, \forall \alpha,\beta \in \mathbb{N}.$

 - Ex : $C_c^{\infty}(\mathbb{R}) \subset S(\mathbb{R})$ et $x \mapsto e^{-x^2} \in S(\mathbb{R})$. Rem : $S(\mathbb{R}) \subset L^1(\mathbb{R})$, donc la transformée de Fourier sur S est bien définie.
 - Ex : Soit $G_{\alpha}(x) = e^{-x^2 \alpha}$. Alors $\widehat{G}_{\alpha} = \sqrt{\frac{\pi}{\alpha}} G_{\frac{1}{\alpha}}$.

Ainsi, la transformée de Fourier d'une gaussienne est encore une gaussienne, qui est encore dans $S(\mathbb{R})$.

- Pro: 1) Les applications $f \mapsto x^{\alpha} f$ et $f \mapsto f^{(\beta)}$ sont continues sur $S(\mathbb{R})$.
 - 2) Si $f, g \in S(\mathbb{R})$, alors $f * g \in S(\mathbb{R})$ et $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$.
- Thm: Inversion de Fourier: La transformation de Fourier est une application linéaire bijective de $S(\mathbb{R})$ dans $S(\mathbb{R})$.

De plus, pour tout $f \in S(R)$, on a $\widehat{f}(x) = f(-x)$.

- 3. Transformation de Fourier dans $S'(\mathbb{R})$.
 - Def : On définit $S'(\mathbb{R})$ comme l'espace vectoriel des formes linéaires continues de $S(\mathbb{R})$ dans \mathbb{C} pour les semi-normes $\|\varphi\|_{\alpha,\beta} = \sup_x |x^{\alpha}\varphi^{(\beta)}(x)|$.
 - Thm+Def: Si $T \in S'(\mathbb{R})$, on définit la transformée de Fourier de T, notée \widehat{T} , par la forme linéaire sur $S(\mathbb{R})$:
 - $<\widehat{T}, \varphi>:=< T, \widehat{\varphi}>, \forall \pi \in S(\mathbb{R}).$

On a de plus $\widehat{T} \in S'(\mathbb{R})$.

- $\operatorname{Ex} : \widehat{\delta_0} \equiv \frac{1}{\sqrt{2\pi}}. \ \widehat{1} = \sqrt{2\pi}\delta_0.$
- Thm : La transformée de Fourier sur $S'(\mathbb{R})$ est bijective, bicontinue.

3. Applications en analyse. —

- 1. Etude de signaux à spectre borné.
 - Def: $I =]-\frac{1}{2}, \frac{1}{2}[, BL^2(I) = \{f \in L^2(\mathbb{R}) \text{ tq } \mathscr{F}(f).\chi_{\mathbb{R}-I} \equiv 0\}.$
 - Pro : C'est un sous-ev fermé de $L^2(\mathbb{R})$.
 - Pro : Si $u \in Bl^2(I)$, alors $u \in C_0^0(\mathbb{R})$ et $||u||_{\infty} \le 1.||u||_2$.
 - Pro : La famille des $(e_k(x) = sinc(\pi(x-k)))_{k\in\mathbb{Z}})$ est une base hilbertienne de $BL^2(I)$.
 - **Dev**: Echantillonnage de Shannon: L'application $u \in BL^2(I) \mapsto (u(k))_{k \in \mathbb{Z}} \in l^2(\mathbb{Z})$ est bien définie et est une isométrie linéaire bijective entre ces deux espaces.

De plus, la série $\sum_{-\infty}^{+\infty} u(k)e_n$ converge vers u dans $L^2(\mathbb{R})$ et dans $C_0^0(\mathbb{R})$. Donc $u(x) = \sum_{-\infty}^{+\infty} u(k) \operatorname{sinc}(\pi(x-k)), \forall x \in \mathbb{R}.$

- 2. Formule sommatoire de Poisson.
 - Thm: Pour $f \in S(\mathbb{R})$, la série $\sum_{n \in \mathbb{Z}} f(.+n)$ converge normalement sur tout compact $de \mathbb{R}$.

- De plus, $\forall x \in \mathbb{R}, \sum_{n} f(x+n) = \sum_{n} \widehat{f}(n)e^{2i\pi nx}$ En particulier, $\sum_{n} f(n) = \sum_{n} \widehat{f}(n)$.
- App: Dans $S'(\mathbb{R})$, on a $\delta_{\mathbb{Z}} = \sum_{k \in \mathbb{Z}} \delta_k = \widehat{\delta_{\mathbb{Z}}}$.
- 3. Polynômes orthogonaux.
 - Def: On appelle function poids une function $\rho: I \to \mathbb{R}$ mesurable, strictement positive, telle que $\forall n \int_{T} |x|^{n} \rho(x) dq \leq +\infty$.
 - Def : On note $L^2(I,\rho)$ l'espace des classes de fonctions de carré intégrable pour la mesure de densité ρ par rapport à la mesue de Lebesgue. Muni de son produit scalaire $\int_I f(x)g(x)\rho(x)dx$, c'est un espace de Hilbert contenant les fonctions polynômiales.
 - Pro : Il existe une unique famille $(P_n)_n$ de polynômes unitaires orthogonaux deux à deux, vérifiant $deg(P_n) = n$, que l'on appelle "famille des polynômes orthogonaux associée à ρ ". On l'obtient en appliquant le procédé de Gram-Schmidt à la famille $(X^n)_n$.
 - Ex : Polynômes de Hermite, de Lagrange, de Chebychev.
 - App : Polynômes de meilleure approximation.
 - Thm: S'il existe a > 0 tq $\int_{I} e^{a|x|} \rho(x) dx \le +\infty$, alors $(P_n)_n$ est une base hilbertienne de $L^2(I,\rho)$.
- 4. Fonction caractéristique d'une variable aléatoire.
 - Def : Fonction caractéristique d'une v.a.
 - Pro : La fonction caractéristique caractérise la loi de la v.a. par injectivité de la transformée de Fourier.
 - Exemples de fonctions caractéristiques.
 - Pro : Si X a un moment d'ordre k, alors Φ_X est de classe C^k . On a de plus $\Phi_{\mathbf{Y}}^{(k)}(t) = E[(iX)^k e^{iXt}].$
 - Thm : Réciproquement, Si Φ_X est de classe C^k , alors X a un moment d'ordre $2 \left| \frac{k}{2} \right|$
 - **Dev** : Théorème de Lévy : X_n converge en loi vers X ssi Φ_{X_n} converge simplement vers Φ_X .
 - App : Théorème Central de la Limite.

Références

Rudin: Transformation de Fourier. The de Fourier-Plancherel. (Dev.)

Briane, Pagès: Transformation de Fourier, produit de convolution, approximations de l'unité. Formule d'inversion de Fourier.

Zuily (Eléments de distributions et d'EDP) : Transformée de Fourier dans $S(\mathbb{R})$, dans $S'(\mathbb{R}).$

Gourdon: Formule sommatoire de Poisson.

Willem: Echantillonnage de Shannon.

Zuily, Queffélec : Fonction caractéristique, Théorème de Lévy+TCL.(Dev)

Faraut: Transformation de Fourier, exemples. The de Fourier-Plancherel. (Dev.)

Objectif Agrégation: Produit de convolution, exemples.

Barbe, Ledoux/Ouvrard: Applications au TCL.

June 11, 2017

Vidal Agniel, École normale supérieure de Rennes